- numpy - scikit-learn - pandas from pyodide.http import open_url import pandas as pd import numpy as np from sklearn.ensemble import RandomForestClassifier #---------------------------We need to open these files and then train them with best params------------------------------------ X_train = pd.read_csv(open_url("https://raw.githubusercontent.com/TusharNautiyal-web/Heart-Dissease-Prediction/main/data/X_train.csv")) X_test = pd.read_csv(open_url("https://raw.githubusercontent.com/TusharNautiyal-web/Heart-Dissease-Prediction/main/data/X_test.csv")) y_train = pd.read_csv(open_url("https://raw.githubusercontent.com/TusharNautiyal-web/Heart-Dissease-Prediction/main/data/y_train.csv")) y_test = pd.read_csv(open_url("https://raw.githubusercontent.com/TusharNautiyal-web/Heart-Dissease-Prediction/main/data/y_test.csv")) X_train = X_train.iloc[:,1:] y_train = y_train.iloc[:,1:] X_test = X_test.iloc[:,1:] y_test = y_test.iloc[:,1:] #--------------------Fetching Form Values-------------------- def submit(*args,**kwargs): final_output = Element('prediction') sex = int(Element('sex').value) cp = int(Element('cp').value) trestbps = int(Element('trestbps').value) age = int(Element('age').value) oldpeak = float(Element('oldpeak').value) exang = int(Element('exang').value) fbs = int(Element('fbs').value) restecg = int(Element('restecg').value) thalach = int(Element('thalach').value) slope = int(Element('slope').value) thal = int(Element('thal').value) chol = int(Element('chol').value) ca = int(Element('ca').value) # ----------- age ------------- if(age>=28.952 and age<45.0): age = 1 elif(age>=45 and age<61): age = 2 elif(age>=61): age = 0 elif(age<28.952): age = 1 # --------- Cholestrol ----------- if(chol>=125.562 and chol<272.0): chol = 0 elif(chol>=272.0 and chol<418.0): chol = 1 elif(chol>=418.0 and chol<564.0): chol = 2 elif(chol<125.562): chol = 0 # --------- old peak ----------- if(oldpeak>= 0 and oldpeak<1.5): oldpeak = 2 elif(oldpeak>=1.5 and oldpeak<2.55): oldpeak = 0 elif(oldpeak>=2.55 and oldpeak<7.0): oldpeak = 1 elif(oldpeak<0): oldpeak = 2 rf = RandomForestClassifier(n_estimators = 400, min_samples_split = 15, max_depth = 15, min_samples_leaf = 5) rf.fit(X_train,y_train.values.ravel()) pred = rf.predict([[sex,cp,trestbps,fbs,restecg,thalach,exang,slope,ca,thal,oldpeak,age,chol]]) #----------------Now we will just predict ------------------------------------------. if pred == 0: prediction_text = "No Presence of heart dissease" final_output.write(prediction_text) else: prediction_text = "Presence of heart Dissease Please go for a checkup" final_output.write(prediction_text)

Heart Dissease Prediction